Переходник soic8 to dip8 для ОУ с термалпадом.

Для экспериментов с такими замечательными ОУ, как LME49880 и ADA4898-2, мне понадобился переходник soic8 на dip8. Эти микросхемы имеют достаточно большой ток покоя выходного каскада, поэтому оснащены термалпадом для дополнительного отвода тепла на плату. Без его пропайки LME49880 просто выходят из строя. Поиск на ali и ebay не дал хорошего результата, предложений много, но все они без термалпада. Тогда я решил развести свой переходник, где сразу решил предусмотреть возможность пайки ОУ без применения паяльной станции.

soic8 to dip8 with thermal pad

 

Идея предельно проста, на площадке под термалпад на плате я расположил переходное отверстие D = 2мм.

Модуль источника питания AH-PW3

Хочу представить вашему вниманию схему источника питания (AH-PW3) для ЦАП-а AH-D3.

Для питания ЦАП используются 4 гальванически не связанных линий питания. Аналоговая часть AH-D3 запитывается от трех нестабилизированных линий +12В и ±16В. Цифровая часть запитывается от стабилизированной линии +5В.

Уважаемые посетители нашего сайта, с Новым годом и Рождеством!

С Новым годом и Рождеством! Пускай этот год будет таким же преданным, ласковым и дружеским, как его символ! Радости в ваш дом, хорошего настроения и реализации ваших творческих идей! И пусть не остынет в доме вашем паяльник, в кружке — чай, а в сердце — желание творить! Да прибудет в ваших цепях расчетная сила тока, да не сгорят ваши транзисторы. И конечно, терпенья вашим женам и родителям.

Поздравление с Новым Годом от администрации сайта.

Переделка транспорта WaveIO в slave режим.

В процессе эксплуатации модуль WaveIO показал себя с очень хорошей стороны, как стабильный и качественный транспорт. Но после разработки очередного цапа у меня возникла необходимость подать клок со стороны ЦАПа, т.е. потребовалось переделать модуль WaveIO для работы с slave режиме.

любители звуковых карт ASUS

подскажите пожалуйста где найти схему электоическую принцыпиальную на звуковую карту asus xonar dg

Стереофонические усилители мощности на STK419-110 — STK419-150

     Вначале 90-х годов были очень популярны музыкальные центры AIWA. Долгое время верой и правдой мне служил музыкальный центр AIWA ZM-2900. Со временем вышел строя проигрыватель лазерных дисков, затем двух-кассетный магнитофон и радиоприемник. Исправными остались усилитель мощности и трансформатор. 

  Электрическую схему музыкального центра AIWA ZM-2900 можно загрузить из вложения. 

    Из всей электрической схемы меня заинтересовал стереофонический усилители мощности на STK419-150, обеспечивавший приличную мощность (около 100 W на канал) и хорошее качество звучания.

   

ZVP2110A – MOSFET P-канальный полевой транзистор

 

Основные характеристики:

Максимальный ток стока                                               — 230mА

Максимальное напряжение сток-исток                          — 100V

Сопротивление сток-исток (откр.)                                 — 8 om

Максимальная мощность рассеивания                         — 700mW

Допустимое напряжение на затворе                             — ±20V

Пороговое напряжение на затворе                               — -1.5...-3.5V

Ток утечки затвора                                                        — 20 nA

Ток утечки стока (закр.)                                                 — < 1uA

Время включения/выключения                                      — 12/15 nS (тип.)

Выходная ёмкость                                                        — 100 pF

Корпус                                                                          — TO-92-3 (E-Line)

Диапазон рабочих температур                                      — -55..+150oC

IRLZ34N — N-канальный МОП-транзистор (MOSFET) с обратным диодом и логическим уровнем управления

Основные характеристики IRLZ34N

Максимальный ток стока                                               — 30А

Максимальное напряжение сток-исток                          — 55V

Сопротивление сток-исток (откр.)                                 — < 0,035 om

Максимальная мощность рассеивания                         — 68W

Допустимое напряжение на затворе                             — ±20V

Пороговое напряжение на затворе                               — +1..+2V

Ток утечки затвора                                                        — < 0,1 uA

Ток утечки стока (закр.)                                                 — < 25 uA

Время включения/выключения                                      — 9/21nS (тип.)

Время восстановления диода                                       — 76nS (тип.)

Входная/выходная ёмкость                                          — 880/220pF

Корпус                                                                          — TO-220

Диапазон рабочих температур                                      — -55..+175oC

 

IRFZ34N — N-канальный MOSFET с обратным диодом и логическим уровнем управления

 

Основные характеристики IRFZ34N

 

Максимальный ток стока                            — 26А

Максимальное напряжение сток-исток       — 55V

Сопротивление сток-исток (откр.)              — < 0,04 om

Максимальная мощность рассеивания       — 56W

Допустимое напряжение на затворе           — ±20V

Пороговое напряжение на затворе            — +2..+4V

Ток утечки затвора                                     — < 0,1 uA

Ток утечки стока (закр.)                              — < 25 uA

Время включения/выключения                   — 7/31nS (тип.)

Время восстановления диода                    — 57nS (тип.)

Входная/выходная ёмкость                        — 700/240pF

Корпус                                                       — TO-220

Диапазон рабочих температур                   — -55..+175 гр.C

  

TDA7294V, УНЧ 100В — 100Вт

Технические параметры

Количество каналов                       — 1

Выходная мощность, Вт                  — 100

Напряжение питания, В                  — ±10…40

Тип корпуса                                    — multiwatt15

Напряжение на нагрузке, В              — ±35

Сопротивление нагрузки, Ом            — 8

Вид напряжения питания                  — двухполярное