Printed Circuit Board Introduction & PCB Types

Printed circuit boards (PCBs) are the boards that are used as the base in most electronics – both as a physical support piece and as the wiring area for the surface-mounted and socketed components. PCBs are most commonly made out of fiberglass, composite epoxy, or another composite material.

 

Want to get fabricaiton price of specilty PCBs such as Flexible PCBs, Flex-rigid PCBs, Aluminum PCBs, Rogers PCBs, etc.? Simply send your Gerber file and requirement on materials and quantity to ALLPCB.

 

ALLPCB is a topspeed PCB manufacturer. Their capabilities include HDI PCBs, Rigid PCBs, Flex PCBs and Rigid-Flex PCBs. For very sophisticated PCBs, we can go down to 3 mils trace width / spacing. They will give the price shortly. They also offer PCB prototyping service to help you get the right PCB design before full production. Avoiding costly errors can save you thousands over the scope of the project.

 

All of ALLPCB designers are compliant with ISO9001:2008 quality management systems and our in-house quality control department will verify that your prototype meets both our and your high standards before we send it off to you. Depending on requirements, most prototype PCBs can be done within 4-5 days when you need quality prototyping done fast. What is Printed Circuit Board Most PCBs for simple electronics are simple and composed of only a single layer.

 

More sophisticated hardware such as computer graphics cards or motherboards can have multiple layers, sometimes up to twelve. Although PCBs are most often associated with computers, they can be found in many other electronic devices, such as TVs, Radios, Digital cameras and Cell phones. In addition to their use in consumer electronics and computers, different types of PCBs are used in a variety of other fields, including:

 

• Medical devices. Electronics products are now denser and consume less power than previous generations, making it possible to test new and exciting medical technology. Most medical devices use a high-density PCB, which is used to create the smallest and densest design possible. This helps to alleviate some of the unique constraints involved with developing devices for the medical field due to the necessity of small size and light weight. PCBs have found their way into everything from small devices, such as pacemakers, to much larger devices like X-ray equipment or CAT scan machines.

 

• Industrial machinery. PCBs are commonly used in high-powered industrial machinery. In places where current one-ounce copper PCBs do not fit the requirements, thick copper PCBs can be utilized instead. Examples of situations where thicker copper PCBs would be beneficial include motor controllers, high-current battery chargers and industrial load testers.

 

• Lighting. As LED-based lighting solutions catch on in popularity because of their low power consumption and high levels of efficiency, so too do aluminum-backed PCBs which are used to make them. These PCBs serve as heat sinks and allow for higher levels of heat transfer than a standard PCB. These same aluminum-backed PCBs form the basis for both high-lumen LED applications and basic lighting solutions.

 

• Automotive and aerospace industries. Both the automotive and aerospace industries make use of flexible PCBs, which are designed to withstand the high-vibration environments that are common in both fields. Depending on specifications and design, they can also be very lightweight, which is a necessity when manufacturing parts for transportation industries. They are also able to conform to the tight spaces that might be present in these applications, such as inside instrument panels or behind the instrument gauge on a dashboard.

 

There are several overall types of PCB boards each with their own particular manufacturing specifications, material types and usages: Single-layer PCBs, Double-layer PCBs, Multi-layer PCBs, Rigid PCBs, Flexible PCBs, Rigid-Flex PCBs, High-frequency PCBs, Aluminum-backed PCBs. Single-layer PCBs A single-layer or single-sided PCB is one that is made out of a single layer of base material or substrate.

 

One side of the base material is coated with a thin layer of metal. Copper is the most common coating due to how well it functions as an electrical conductor. Once the copper base plating is applied, a protective solder mask is usually applied, followed by the last silk-screen to mark out all of the elements on the board. Single-layer PCB Since single-layer/single-sided PCBs only have their various circuits and components soldered onto one side, they are easy to design and manufacture.

 

This popularity means that they can be purchased at a low-cost, especially for high-volume orders. The low-cost, high volume model means they are commonly used for a variety of applications, including calculators, cameras, radio and stereo equipment, solid state drives, printers and power supplies.

 

Double-layer PCBs Double-layer or double-sided PCBs have a base material with a thin layer of conductive metal, like copper, applied to both sides of the board. Holes drilled through the board allow circuits on one side of the board to connect to circuits on the other. Double-layer PCB The circuits and components of a double-layer PCB board are usually connected in one of two ways: either utilizing a through-hole or with the use of a surface-mount.

 

A through-hole connection means that small wires, known as leads, are fed through the holes, with each end of the leads then soldered to the right component. Surface mount PCBs don't utilize wires as connectors. Instead, many small leads are soldered directly to the board, meaning that the board itself is used as a wiring surface for the different components.

 

This allows circuits to be completed using less space, freeing up space to allow the board to complete more functions, usually at higher speeds and a lighter weight than a through-hole board would allow. Double-sided PCBs are typically used in applications which require an intermediate level of circuit complexity, such as Industrial controls, Power supplies, Instrumentation, HVAC systems, LED lighting, Automotive dashboards, Amplifiers and Vending machines. Multi-layer PCBs Multi-layer PCBs consist of a series of three or more double-layered PCBs.

 

These boards are then secured together with a specialized glue and sandwiched between pieces of insulation to ensure that excess heat doesn't melt any of the components. Multi-layer PCBs come in a variety of sizes, going as small as four layers or as large as ten or twelve. The largest multi-layer PCB ever built was 50 layers thick. Multi-layer PCB With many layers of printed circuit boards, designers can make very thick, complex designs which are suitable for a broad range of complicated electrical tasks.

 

Applications where multi-layer PCBs would be beneficial include File servers, Data storage, GPS technology, Satellite systems, Weather analysis and Medical equipment. Rigid PCBs Rigid PCBs are printed circuit boards that are made out of a solid substrate material that prevents the board from twisting.

 

Possibly the most common example of a rigid PCB is a computer motherboard. The motherboard is a multilayer PCB designed to allocate electricity from the power supply while simultaneously allowing communication between all of the many parts of the computer, such as CPU, GPU and RAM. Rigid PCBs make up perhaps the largest number of PCBs manufactured. These PCBs are used anywhere that there is a need for the PCB itself to be set up in one shape and remain that way for the remainder of the device's lifespan. Rigid PCBs can be anything from a simple single-layer PCB all the way up to an eight or ten-layer multi-layer PCB. Rigid PCB All Rigid PCBs have single-layer, double-layer or multilayer constructions, so they all share the same applications. Flexible PCBs Unlike rigid PCBs, which use unmoving materials such as fiberglass, flexible PCBs are made of materials that can flex and move, such as plastic. Like rigid PCBs, flexible PCBs come in single, double or multilayer formats. As they need to be printed on a flexible material, they tend to cost more for fabrication. Flexible PCB Still, flexible PCBs offer many advantages over rigid PCBs.

 

The most prominent of these advantages is the fact that they are flexible. This means they can be folded over edges and wrapped around corners. Their flexibility can lead to cost and weight savings since a single flexible PCB can be used to cover areas that might take multiple rigid PCBs. Flexible PCBs can also be used in areas that might be subject to environmental hazards. To do so, they are simply built using materials that might be waterproof, shockproof, corrosion-resistant or resistant to high-temperature oils — an option that traditional rigid PCBs may not have. Flex-rigid PCBs Flex-rigid PCBs combine the best of both worlds when it comes to the two most important overarching types of PCB boards.

 

Flex-rigid boards consist of multiple layers of flexible PCBs attached to a number of rigid PCB layers. Flex-rigid PCBs have many advantages over just using rigid or flexible PCBs for certain applications. For one, rigid-flex boards have a lower parts count than traditional rigid or flexible boards because the wiring options for both can be combined into a single board. The combination of rigid and flexible boards into a single rigid-flex board also allows for a more streamlined design, reducing the overall board size and package weight.

 

Flex-rigid PCB Flex-rigid PCBs are most often found in applications where space or weight are prime concerns, including Cell phones, Digital cameras, Pacemakers and Automobiles. High-frequency PCBs High-frequency PCBs refer to a general PCB design element, rather than a type of PCB construction like the previous models. High-frequency PCBs are circuit boards that are designed to transmit signals over one gigahertz.

 

High-frequency PCB High-frequency PCB materials often include FR4-grade glass-reinforced epoxy laminate, polyphenylene oxide (PPO) resin and Teflon. Teflon is one of the most expensive options available because of its small and stable dielectric constant, small amounts of dielectric loss and overall low water absorption. Many aspects need to be considered when choosing high-frequency PCB board and its corresponding type of PCB connector, including dielectric constant (DK), dissipation, loss and dielectric thickness. The most important of those is the Dk of the material in question.

 

Materials with high probability for the change of dielectric constant often have changes in impedance, which can disrupt the harmonics that make up a digital signal and cause an overall loss of digital signal integrity — one of the things that high-frequency PCBs are designed to prevent. Other things to consider when choosing the boards and PC connector types to use when designing a high-frequency PCB are: • Dielectric loss (DF), which affects the quality of signal transmission.

 

A smaller amount of dielectric loss could make a small amount of signal wastage. • Thermal expansion. If the thermal expansion rates of the materials used to build the PCB, such as copper foil, are not the same, then materials could separate from each other due to changes in temperature. • Water absorption. High amounts of water intake will affect the dielectric constant and dielectric loss of PCB, especially if it is used in wet environments. • Other resistances. The materials utilized in the construction of a high-frequency PCB should be rated highly for heat resistance, impact endurance and resistance to hazardous chemicals, as necessary.

Даташит на AK4113 — 24-битный цифровой ресивер

AK4113 — это 24-битный цифровой аудио ресивер, поддерживающий частоту дискретизации до 216 кГц. Приемник поддерживает как последовательный режим управления (soft-mode), так и параллельный режим (pin-mode).

  • AES/EBU, IEC60958, S/PDIF, EIAJ CP1201 Compatible
  • Low Jitter Analog PLL
  • PLL Lock Range: 8k to 216kHz
  • Clock source: PLL or X'tal
  • 6-channel Receiver Input and 1-channel Transmission Output (Through output)
  • Auxiliary Digital Input
  • De-emphasis for 32kHz, 44.1kHz and 48kHz

Даташит на AK4490EQ, 32-разрядных стерео ЦАП премиум-класса

AK4490EQ — 32-разрядных стерео ЦАП премиум-класса, созданный по новой архитектуре VELVET SOUND от AKM. Эта технология позволяет воспроизводить самые мелкие звуковые детали с низким искажениями.

 

Цифровой вход поддерживает до 768 кГц PCM и 12,2 МГц DSD (Direct Stream Digital). В ЦАП доступны 5 цифровых фильтров. AK4490EQ подходит для воспроизведения звука с высоким разрешением, например, для сетевого аудио и USB DAC.

 

ZVP2110A – MOSFET P-канальный полевой транзистор

 

Основные характеристики:

Максимальный ток стока                                               — 230mА

Максимальное напряжение сток-исток                          — 100V

Сопротивление сток-исток (откр.)                                 — 8 om

Максимальная мощность рассеивания                         — 700mW

Допустимое напряжение на затворе                             — ±20V

Пороговое напряжение на затворе                               — -1.5...-3.5V

Ток утечки затвора                                                        — 20 nA

Ток утечки стока (закр.)                                                 — < 1uA

Время включения/выключения                                      — 12/15 nS (тип.)

Выходная ёмкость                                                        — 100 pF

Корпус                                                                          — TO-92-3 (E-Line)

Диапазон рабочих температур                                      — -55..+150oC

IRLZ34N — N-канальный МОП-транзистор (MOSFET) с обратным диодом и логическим уровнем управления

Основные характеристики IRLZ34N

Максимальный ток стока                                               — 30А

Максимальное напряжение сток-исток                          — 55V

Сопротивление сток-исток (откр.)                                 — < 0,035 om

Максимальная мощность рассеивания                         — 68W

Допустимое напряжение на затворе                             — ±20V

Пороговое напряжение на затворе                               — +1..+2V

Ток утечки затвора                                                        — < 0,1 uA

Ток утечки стока (закр.)                                                 — < 25 uA

Время включения/выключения                                      — 9/21nS (тип.)

Время восстановления диода                                       — 76nS (тип.)

Входная/выходная ёмкость                                          — 880/220pF

Корпус                                                                          — TO-220

Диапазон рабочих температур                                      — -55..+175oC

 

IRFZ34N — N-канальный MOSFET с обратным диодом и логическим уровнем управления

 

Основные характеристики IRFZ34N

 

Максимальный ток стока                            — 26А

Максимальное напряжение сток-исток       — 55V

Сопротивление сток-исток (откр.)              — < 0,04 om

Максимальная мощность рассеивания       — 56W

Допустимое напряжение на затворе           — ±20V

Пороговое напряжение на затворе            — +2..+4V

Ток утечки затвора                                     — < 0,1 uA

Ток утечки стока (закр.)                              — < 25 uA

Время включения/выключения                   — 7/31nS (тип.)

Время восстановления диода                    — 57nS (тип.)

Входная/выходная ёмкость                        — 700/240pF

Корпус                                                       — TO-220

Диапазон рабочих температур                   — -55..+175 гр.C

  

TDA7294V, УНЧ 100В — 100Вт

Технические параметры

Количество каналов                       — 1

Выходная мощность, Вт                  — 100

Напряжение питания, В                  — ±10…40

Тип корпуса                                    — multiwatt15

Напряжение на нагрузке, В              — ±35

Сопротивление нагрузки, Ом            — 8

Вид напряжения питания                  — двухполярное

LM3886T/NOPB. Мощный одноканальный усилитель НЧ, 68Вт


 
Технические параметры LM3886T

 

 Количество каналов                     — 1

Выходная мощность, Вт               — 68

Напряжение питания, В                — ±20…84

Тип корпуса                                 — TO220-11

Напряжение на нагрузке, В           — 28

Сопротивление нагрузки, Ом        — 4

Вид напряжения питания               — двухполярное